


Translation is the component-wise addition of vectors
        v' = v + t        where

and        x' = x + dx
                y' = y + dy

Operation is isometric (preserves lengths)



Scaling is the component-wise multiplication of vectors
        v' = Sv        where

and

Does not preserve lengths
Does not preserve angles
(unless scaling is uniform)



Rotation of Ө about the origin

        v' = RӨ        where

and        x' = x cosӨ - y sinӨ

                 y' = x sinӨ - y cosӨ

A rotation of zero (no rotation) is 
results in the identity matrix



Suppose we want to scale and rotate an object 
that is not centered at origin.

Solution: move to the origin, scale and/or rotate 
in its local coordinate system, then move it back.

This sequence suggest the need to compose 
successive transformations....



The scene graph contains a hierarchical representation of the spatial relationship between objects.

This also requires us to be able to compose multiple transformations!



Translation, scaling and rotation are expressed as:

Composition is difficult to express because does not use matrix multiplication!



Homogeneous coordinates allow expression of all three  
transformations as 3x3 matrices for easy composition.

This conversion does not transform p.  It only changes notation 
to show that it can be viewed as a point on w = 1 hyperplane.



P2d is intersection of line determined by Ph with the  w = 1 plane.

Two sets of coordinates that are proportional denote the same point of projective space:
For any non-zero scalar c, (cx, cy, ..., cw) denotes the same point.



For points written in homogeneous coordinates, translation, scaling 
and rotation relative to the origin are expressed homogeneously as:







The first two columns are:

vectors (3rd component is 0)

the X-axis and Y-axis of the coordinate frame specified by the transformation

if a rotation matrix, these columns will show the vectors into which the X and Y-axes rotate.

The third column is:

a point (3rd component is 1)

the origin of the coordinate frame







Apply a sequence of transformations:

Because matrix algebra obeys the associative law, we can regroup this as:

This allows us to compose the transformations into a single matrix:



Matrix multiplication is not commutative.  The order of transformations matters!





Le�-Handed Coordinate System Right-Handed Coordinate System

Image Credit: https://learn.microso�.com/en-us/previous-versions/windows/desktop/bb324490(v=vs.85)



Translation

Scaling



Rotation about X-axis

Rotation about Y-axis

Rotation about Z-axis





matrix.makeTranslation(v: Vector3);

matrix.makeScale(v: Vector3);

matrix.makeRotationX(angle: number);

matrix.makeRotationY(angle: number);

matrix.makeRotationZ(angle: number);

Matrix4 has special utility routines to help us create 4x4 matrices for the basic transformations.

What about rotation about an arbitrary axis?



One way to build a rotation in 3D is by composing three elementary rotation transformations:

        an x-rotation(pitch),

        followed by a y-rotation (yaw or head),

        and then a z-rotation (roll).

The overall rotation is given by:

        M = Rz(β3)Ry( β2)Rx(β1)

In this context the angles β1, β2, and β3 are o�en called Euler angles.



3D rotation matrices are not commutative!

M = Rz(β3)Ry( β2)Rx(β1)

If you want to describe this rotation to me...

I need to know B1, B2, B3

AND, I need to know the order of rotation



Euler's theorem states that any sequence of rotations 
can be represented as one rotation about some axis.

To rotate around arbitrary axis u by angle B:

Use 2 rotations to align u with the X-axis.

Rotate around the X-axis (an X roll) by angle B.

Undo the original 2 rotations.



// Construct rotation matrix

const axis = gfx.Vector3.normalize(new gfx.Vector3(1, 1, 1));

const angle = 45 * Math.PI / 180;

const matrix = gfx.Matrix4.makeAxisAngle(axis, angle);

// You can transform a Vector3 using a Matrix4 (this uses homogeneous coordinates under the hood)

const point = new gfx.Vector3(100, 200, 300);

point.transform(matrix);

// Construct a rotation quaternion

const axis = new gfx.Vector3(1, 1, 1).normalize();

const angle = 45 * Math.PI / 180;

const quat = gfx.Quaternion.makeAxisAngle(axis, angle);

// You can rotate a Vector3 using a Quaternion

const point = new gfx.Vector3(100, 200, 300);

point.rotate(q);

Note: some of the function signatures in these slides may be slightly different in the Assignment 2 version due to a recent code refactor.



const eye = new gfx.Vector3(0, 0, 0);

const target = new gfx.Vector3(0, 0, -1);

const up = new gfx.Vector3(0, 1, 0);

const matrix = new gfx.Matrix4();

matrix.lookAt(eye, target, up);

const quat = new gfx.Quaternion();

quat.lookAt(eye, target, up);

The Matrix4.lookAt() and Quaternion.lookAt() functions construct a rotation looking from an 
eye point towards a target point, given a defined up vector.



const T = new gfx.Matrix4.makeTranslation(1, 0, 0);

const S = new gfx.Matrix4.makeScale(2, 2, 2);

const Rx = new gfx.Matrix4().makeRotationX(45 * Math.PI / 180);

// There is no * operator for objects

// This will give you a syntax error

const combo = T * S;

// Of course, there is a function to do this

const combo = new gfx.Matrix4();

combo.multiply(T, S);

combo.multiply(combo, Rx);

Remember, composing transformations is done mathematically via matrix multiplication. 





// This disables automatic matrix composition and lets you set it manually.

// Otherwise, the matrix will be overwritten every frame after update() completes.

transform.autoUpdateMatrix = false; 

transform.matrix.compose(position, rotation, scale);

// If you have changed the object's position, rotation, or scale then

// you can force the world matrix to be recomputed and then decompose the matrix.

transform.updateWorldMatrix()

const [worldPosition, worldRotation, worldScale] = transform.worldMatrix.decompose();


